МУНИЦИПАЛЬНОЕ ОБІЦЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ОСНОВНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА С. КЛЕВЕНКА ИВАНТЕЕВСКОГО РАЙОНА САРАТОВСКОЙ ОБЛАСТИ

«Рассмотрено» на заседании ШМО учителей естественно-научного цикла МОУ "ООШ с. Клевенка»

Дуу / Кузнецова М.В /

Протокол № 1

от «29» августа2018 г

«Согласовано»

Заместитель директора по УВР МОУ «ООШ с. Клевенка»

//www./ Вишнякова С.А. /

«29» августа2018 г

«Утверждаю»

Директор

МОУ «ООШ с. Клевенка»

Chace Matter E.B./

Приказ №

от «29 » августа 2018 г

РАБОЧАЯ ПРОГРАММА

учебного предмета «Физика»

Класс (ы): 7-9

Уровень образования- основное общее образование

Уровень изучения предмета- базовый уровень

Срок реализации программы: 2018/2023 г.

Рабочую программу составили учителя физики:

Гриднев Алексей Геннадьевич Матюх Елена Васильевна Егармина Ольга Викторовна

Рабочая программа составлена на основе следующих нормативно-правовых документов:

- **Федеральный** закон «Об образовании в Российской Федерации» №273-ФЗ от 29 декабря 2012 года;
- **Приказ** Министерства образования и науки Российской Федерации от 17.12.2010 г. № 1897 «Об утверждении федерального государственного образовательного стандарта основного общего образования»;
- **Приказ** Министерства образования и науки Российской Федерации от 31.12.2015 г. №1577 «О внесении изменений в федеральный государственный образовательный стандарт основного общего образования, утвержденный приказом Министерством образования и науки Российской Федерации от 17 декабря 2010 г. № 1897»;
- **Приказ** Министерства образования и науки Российской Федерации от 31.03.2014 года №253 «Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования.» с изменениями на 5 июля 2017 года №629;
- Основная образовательная программа основного общего образования муниципального общеобразовательного учреждения «Основная общеобразовательная школа с. Клевенка Ивантеевского района Саратовской области»;
- **Физика.** 7—9 классы: рабочая программа к линии УМК А. В. Перышкина, Е. М. Гутник: учебно-методическое пособие / Н. В. Филонович, Е. М. Гутник. М.: Дрофа, 2017..
- Локальные акты школы.

Программа рассчитана на учащихся 7-9 классов МОУ «ООШ с. Клевенка».

Уровень подготовки учащихся позволяет изучать предполагаемый курс на базовом уровне.

На изучение физики в 7-8 классах основной школы отводится по 2 часа в неделю, в 9 классе -3 часа в неделю. Курс рассчитан на 242 часов: в 7-8 классах по 70 ч, в 9 классе -102 ч. (35 учебных недель в 7-8 классе, 34 учебные недели в 9 классе).

Для реализации программного содержания используются следующие учебные пособия:

Учебники:

- 1. Физика: 7 класс: учебник для учащихся общеобразовательных учреждений. А.В. Перышкин. Издательство «Дрофа», 2013.
- 2. Физика: 8 класс: учебник для учащихся общеобразовательных учреждений. А.В. Перышкин. Издательство «Дрофа», 2013.
- 3. Физика: 9 класс: учебник. А.В. Перышкин, Е.М.Гутник. Издательство «Дрофа», 2018.

Сборник задач:

Сборник задач по физике 7-9 кл.: к учебникам А.В.Перышкин и др. «Физика 7 класс», «Физика 8 класс», «Физика 9 класс» ФГОС / А.В.Перышкин, сост. Г.А.Лонцова. Издательство «Экзамен» - 2017 г.

Планируемые результаты изучения учебного предмета «Физика»

Личностными результатами обучения физике в основной школе являются:

- 1. Российская гражданская идентичность (патриотизм, уважение к Отечеству, к прошлому и настоящему многонационального народа России, чувство ответственности и долга перед Родиной, идентификация себя в качестве гражданина России, субъективная значимость использования русского языкаи языков народов России, осознание и ощущение личностной сопричастности судьбе российского народа). Осознание этнической принадлежности, знание истории, языка, культуры своего народа, своего края, основ культурного наследия народовРоссии и человечества (идентичность человека с российскоймногонациональной культурой, сопричастность истории народов и государств, находившихся на территории современной России); интериоризация гуманистических, демократических и традиционных ценностей многонационального российскогообщества. Осознанное, уважительное и доброжелательное отношение к истории, культуре, религии, традициям, языкам, ценностям народов России и народов мира.
- 2. Готовность и способность обучающихся к саморазвитиюи самообразованию на основе мотивации к обучению и познанию; готовность и способность к осознанному выбору и построению дальнейшей индивидуальной траектории образованияна базе ориентировки в мире профессий и профессиональных предпочтений, с учетом устойчивых познавательных интересов.
- 3. Развитое моральное сознание и компетентность в решении моральных проблем на основе личностного выбора, формированиенравственных чувств и нравственного поведения, осознанного и ответственного отношения к собственным поступкам (способность к нравственному самосовершенствованию; веротерпимость, уважительное отношение к религиозным чувствам, взглядам людей или их отсутствию; знаниеосновныхнорм морали, нравственных, духовных идеалов, хранимых в культурных традициях народов России, готовностьна их основек сознательному самоограничению в поступках, поведении, расточительном потребительстве; сформированность представлений об основах светской этики, культуры традиционных религий, их роли в развитии культуры и истории России и человечества, в становлении гражданского обществаи российской государственности; понимание значения нравственности, веры и религии в жизни человека, семьи и общества).

Сформированность ответственного отношения к учению; уважительного отношения к труду, наличие опыта участияв социально значимом труде. Осознание значения семьив жизни человека и общества, принятие ценности семейнойжизни, уважительное и заботливое отношение к членам своейсемьи.

- 4. Сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое, духовное многообразие современного мира.
- 5. Осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению, культуре, языку, вере, гражданской позиции. Готовность и способность вести диалог с другими людьми и достигать в нем взаимопонимания (идентификация себя как полноправного субъекта общения, готовность к конструированию образа партнера по диалогу, готовность к конструированию образа допустимых способовдиалога, готовность к конструированию процесса диалога как конвенционирования интересов, процедур, готовность и способность к ведению переговоров).
- 6. Освоенность социальных норм, правил поведения, ролейи форм социальной жизни в группах и сообществах. Участиев школьном самоуправлении и общественной жизни в пределах возрастных компетенций с учетом региональных, этнокультурных, социальных и экономических особенностей (формирование готовности к участию в процессе упорядочения социальных связей и отношений, в которые включены и которыеформируют сами учащиеся; включенность в непосредственноегражданское участие, готовность участвовать в жизнедеятельности подросткового общественного объединения,

продуктивновзаимодействующего с социальной средой и социальными

институтами; идентификация себя в качестве субъекта социальных преобразований, освоение компетентностей в сфере организаторской деятельности; интериоризация ценностей созидательного отношения к окружающей действительности, ценностей социального творчества, ценности продуктивной организации совместной деятельности, самореализации в группеи организации, ценности «другого» как равноправного партнера, формирование компетенций анализа, проектирования, организации деятельности, рефлексии изменений, способоввзаимовыгодного сотрудничества, способов реализации собственного лидерского потенциала).

- 7. Сформированность ценности здорового и безопасного образа жизни; интериоризация правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей, правил поведения натранспорте и на дорогах.
- 8. Развитость эстетического сознания через освоение художественного наследия народов России и мира, творческой деятельности эстетического характера (способность понимать художественные произведения, отражающие разные этнокультурные традиции; сформированность основ художественной культуры обучающихся как части их общей духовной культуры, как особого способа познания жизни и средства организации общения; эстетическое, эмоционально-ценностное видениеокружающего мира; способность к эмоционально-ценностномуосвоению мира, самовыражению и ориентации в художественном и нравственном пространстве культуры; уважение к историикультуры своего Отечества, выраженной в том числев понимании красоты человека; потребность в общении с художественными произведениями, сформированность активного отношения к традициям художественной культуры как смысловой, эстетической и личностно-значимой ценности).
- 9. Сформированность основ экологической культуры, соответствующей современному уровню экологического мышления, наличие опыта экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях (готовность к исследованию природы, к занятиям сельскохозяйственным трудом, к художественно-эстетическому отражению природы, к занятиям туризмом, в том числеэкотуризмом, к осуществлению природоохранной деятельности).

Метапредметные результаты обучения физике в основной школе включают межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные).

Межпредметные понятия

Условием формирования межпредметных понятий, таких, как система, факт, закономерность, феномен, анализ, синтезявляется овладение обучающимися основами читательскойкомпетенции, приобретение навыков работы с информацией, участие в проектной деятельности. В основной школе продолжается работа по формированию и развитию основ читательской компетенции. Обучающиеся овладеют чтением как средством осуществления своих дальнейших планов: продолжения образования и самообразования, осознанного планированиясвоего актуального и перспективного круга чтения, в том числе досугового, подготовки к трудовой и социальной деятельности. У выпускников будет сформирована потребность в систематическом чтении как средстве познания мира и себя в этоммире, гармонизации отношений человека и общества, созданииобраза «потребного будущего».

При изучении физики обучающиеся усовершенствуют приобретенные навыки работы с информацией и пополнят их. Онисмогут работать с текстами, преобразовывать и интерпретировать содержащуюся в них информацию, в том числе:

- ••систематизировать, сопоставлять, анализировать, обобщать и интерпретировать информацию, содержащуюся в готовых информационных объектах;
- ••выделять главную и избыточную информацию, выполнять смысловое свертывание выделенных фактов, мыслей;представлять информацию в сжатой словесной форме (в

видеплана или тезисов) и в наглядно-символической форме (в видетаблиц, графических схем и диаграмм, карт понятий — концептуальных диаграмм, опорных конспектов); •заполнять и дополнять таблицы, схемы, диаграммы, тексты.

В ходе изучения физики обучающиеся приобретут опыт проектной деятельности как особой формы учебной работы, способствующей воспитанию самостоятельности, инициативности, ответственности, повышению мотивации и эффективности учебной деятельности; в ходе реализации исходного замысла на практическом уровне овладеют умением выбирать адекватные стоящей задаче средства, принимать решения, в томчисле и в ситуациях неопределенности. Они получат возможность развить способность к разработке нескольких вариантоврешений, к поиску нестандартных решений, поиску и осуществлению наиболее приемлемого решения.

Предметными результатами освоения темы являются:

- понимание физических терминов: тело, вещество, материя;
- умение проводить наблюдения физических явлений; измерять физические величины: расстояние, промежуток времени, температуру; определять цену деления шкалы приборас учетом погрешности измерения;
- понимание роли ученых нашей страны в развитии современной физики и влиянии на технический и социальный прогресс.

Предметными результатами освоения темы являются:

Механические явления

- понимание и способность объяснять физические явления: механическое движение, равномерное и неравномерноедвижение, инерция, всемирное тяготение, равновесие тел, превращение одного вида механической энергии в другой, атмосферное давление, давление жидкостей, газов и твердых тел, плавание тел, воздухоплавание, расположение уровня жидкости в сообщающихся сосудах, существование воздушной оболочки Земли, способы уменьшения и увеличения давления;
- понимание и способность описывать и объяснять физические явления: поступательное движение, смена дня и ночи наЗемле, свободное падение тел, невесомость, движение поокружности с постоянной по модулю скоростью, колебания математического и пружинного маятников, резонанс (в том числезвуковой), механические волны, длина волны, отражение звука, эхо;
- знание и способность давать определения/описания физических понятий: относительность движения, первая космическая скорость, реактивное движение; физических моделей:материальная точка, система отсчета; физических величин: перемещение, скорость равномерного прямолинейного движения, мгновенная скорость и ускорение при равноускоренномпрямолинейном движении, скорость и центростремительноеускорение при равномерном движении тела по окружности,импульс;
- умение измерять: скорость, мгновенную скорость и ускорение при равноускоренном прямолинейном движении, центростремительноеускорение при равномерном движении поокружности, массу, силу, вес, силу трения скольжения, силутрения качения, объем, плотность тела, равнодействующую сил, действующих на тело, механическую работу, мощность, плечосилы, момент силы, КПД, потенциальную и кинетическую энергию, атмосферное давление, давление жидкости на днои стенки сосуда, силу Архимеда;
- владение экспериментальными методами исследованиязависимости: пройденного пути от времени, удлинения пружины от приложенной силы, силы тяжести тела от его массы, силы трения скольжения от площади соприкосновения тел и силы, прижимающей тело к поверхности (нормального давления), силы Архимеда от объема вытесненной телом воды, условий плавания тела в жидкости от действия силы тяжестии силы Архимеда, зависимости периода и частоты колебаниймаятника от длины его нити;
- владение экспериментальными методами исследованияпри определении соотношения сил и плеч, для равновесия рычага;

- понимание смысла основных физических законов: законы Ньютона, закон всемирного тяготения, закон Гука, законсохранения импульса, закон сохранения энергии, закон Паскаля, закон Архимеда и умение применять их на практике;
- владение способами выполнения расчетов при нахождении: скорости (средней скорости), пути, времени, силы тяжести, веса тела, плотности тела, объема, массы, силы упругости, равнодействующей сил, действующих на тело, механическойработы, мощности, условия равновесия сил на рычаге, момента силы, КПД, кинетической и потенциальной энергии, давления, давления жидкости на дно и стенки сосуда, силы Архимеда в соответствии с поставленной задачей на основании использования законов физики;
- умение находить связь между физическими величинами: силой тяжести и массой тела, скорости со временем и путем,плотности тела с его массой и объемом, силой тяжести и весомтела;
- умение переводить физические величины из несистемных в СИ и наоборот;
- понимание принципов действия динамометра, весов, встречающихся в повседневной жизни, рычага, блока, наклонной плоскости, барометра-анероида, манометра, поршневогожидкостного насоса, гидравлического пресса и способов обеспечения безопасности при их использовании;
- умение приводить примеры технических устройств и живых организмов, в основе перемещения которых лежит принцип реактивного движения; знание и умение объяснять устройство и действие космических ракет-носителей;
- умение использовать полученные знания в повседневнойжизни (быт, экология, охрана окружающей среды).

Тепловые явления

- понимание и способность объяснять физические явления: диффузия, большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел, конвекция, излучение, теплопроводность, изменение внутренней энергии тела в результатетеплопередачи или работы внешних сил, испарение (конденсация) и плавление (отвердевание) вещества, охлаждение жидкости при испарении, кипение, выпадение росы;
- владение экспериментальными методами исследованияпри определении размеров малых тел, зависимости относительной влажности воздуха от давления водяного пара, содержащегося в воздухе при данной температуре; давления насыщенного водяного пара; определения удельной теплоемкостивещества;
- понимание причин броуновского движения, смачивания и не смачивания тел; различия в молекулярном строении твердых тел, жидкостей и газов;
- понимание принципов действия конденсационного и волосного гигрометров, психрометра, двигателя внутреннего сгорания, паровой турбины и способов обеспечения безопасности при их использовании;
- умение измерять: температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавления вещества, влажность воздуха;
- понимание смысла закона сохранения и превращения энергии в механических и тепловых процессах и умение применять его на практике;
- овладение способами выполнения расчетов для нахождения: удельной теплоемкости, количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении, удельной теплоты сгорания топлива, удельной теплоты плавления, влажности воздуха, удельной теплоты парообразованияи конденсации, КПД теплового двигателя;
- умение пользоваться СИ и переводить единицы измерения физических величин в кратные и дольные единицы;
- умение использовать полученные знания в повседневнойжизни (быт, экология, охрана окружающей среды).

Электромагнитные явления

- понимание и способность объяснять физические явления: электризация тел, нагревание проводников электрическим током, электрический ток в металлах, электрические явления с позиции строения атома, действия электрическоготока, намагниченность железа и стали,

взаимодействие магнитов, взаимодействие проводника с током и магнитной стрелки, действие магнитного поля на проводник с током, прямолинейное распространение света, образование тени и полутени, отражение и преломление света;

- понимание и способность описывать и объяснять физические явления/процессы: электромагнитная индукция, самоиндукция, преломление света, дисперсия света, поглощение и испускание света атомами, возникновение линейчатых спектровиспускания и поглощения;
- знание и способность давать определения/описания физических понятий: магнитное поле, линии магнитной индукции, однородное и неоднородное магнитное поле, магнитныйпоток, переменный электрический ток, электромагнитноеполе, электромагнитные волны, электромагнитные колебания, радиосвязь, видимый свет; физических величин: магнитная индукция, индуктивность, период, частота и амплитуда электромагнитных колебаний, показатели преломления света;
- знание формулировок, понимание смысла и умение применять закон преломления света и правило Ленца, квантовыхпостулатов Бора;
- понимание смысла основных физических законов и умение применять их на практике: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля—Ленца, закон отражения света, закон преломления света, закон прямолинейного распространения света;
- умение измерять: силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление, фокусное расстояние собирающей линзы, оптическую силу линзы;
- владение экспериментальными методами исследованиязависимости: силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от егодлины, площади поперечного сечения и материала, зависимости магнитного действия катушки от силы тока в цепи, изображения от расположения лампы на различных расстояниях отлинзы, угла отражения от угла падения света на зеркало;
- понимание принципа действия электроскопа, электрометра, гальванического элемента, аккумулятора, фонарика, реостата, конденсатора, лампы накаливания и способов обеспечения безопасности при их использовании;
- знание назначения, устройства и принципа действия технических устройств: электромеханический индукционный генератор переменного тока, трансформатор, колебательный контур, детектор, спектроскоп, спектрограф;
- различать фокус линзы, мнимый фокус и фокусное расстояние линзы, оптическую силу линзы и оптическую ось линзы, собирающую и рассеивающую линзы, изображения, даваемые собирающей и рассеивающей линзой;
- владение способами выполнения расчетов для нахождения: силы тока, напряжения, сопротивления при параллельном и последовательном соединении проводников, удельного сопротивления проводника, работы и мощности электрического тока, количества теплоты, выделяемого проводником с током, емкости конденсатора, работы электрического поля конденсатора, энергии конденсатора;
- понимание сути метода спектрального анализа и его возможностей;
- умение использовать полученные знания в повседневнойжизни (экология, быт, охрана окружающей среды, техникабезопасности).

Квантовые явления

- понимание и способность описывать и объяснять физические явления: радиоактивность, ионизирующие излучения;
- знание и способность давать определения/описания физических понятий: радиоактивность, альфа-, бета- и гамма-частицы; физических моделей: модели строения атомов, предложенные Д. Томсоном и Э. Резерфордом; протонно-нейтронная модель атомного ядра, модель процесса деления ядра атомаурана; физических величин: поглощенная доза излучения, коэффициент качества, эквивалентная доза, период полураспада;

- умение приводить примеры и объяснять устройствои принцип действия технических устройств и установок: счетчик Гейгера, камера Вильсона, пузырьковая камера, ядерный реактор на медленных нейтронах;
- умение измерять мощность дозы радиоактивного излучения бытовым дозиметром;
- знание формулировок, понимание смысла и умениеприменять: закон сохранения массового числа, закон сохранения заряда, закон радиоактивного распада, правило смещения;
- владение экспериментальными методами исследованияв процессе изучения зависимости мощности излучения продуктов распада радона от времени;
- понимание сути экспериментальных методов исследования частиц;
- умение использовать полученные знания в повседневнойжизни (быт, экология, охрана окружающей среды, техникабезопасности и др.).

Строение и эволюция Вселенной

- представление о составе, строении, происхождении и возрасте Солнечной системы;
- умение применять физические законы для объяснениядвижения планет Солнечной системы;
- знание и способность давать определения/описания физических понятий: геоцентрическая и гелиоцентрическая системымира;
- объяснение сути эффекта X. Доплера; знание формулировки и объяснение сути закона Э. Хаббла;
- знание, что существенными параметрами, отличающимизвезды от планет, являются их массы и источники энергии (термоядерные реакции в недрах звезд и радиоактивные в недрах планет), что закон Э. Хаббла явился экспериментальным подтверждением модели нестационарной Вселенной, открытой А. А. Фридманом;
- сравнивать физические и орбитальные параметры планет земной группы с соответствующими параметрами планет-гигантов и находить в них общее и различное.

Планируемые результаты освоения программы по физике

7 класс

Обучающийся научится:

Физика и физические методы изучения природы.

- соблюдать правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием;
- понимать смысл основных физических терминов: физическое тело, физическое явление, физическая величина, единицы измерения;
- распознавать проблемы, которые можно решить при помощи физических методов; анализировать отдельные этапы проведения исследований и интерпретировать результаты наблюдений и опытов;
- ставить опыты по исследованию физических явлений или физических свойств тел без использования прямых измерений; при этом формулировать проблему/задачу учебного эксперимента; собирать установку из предложенного оборудования; проводить опыт и формулировать выводы.

Первоначальные сведения о строении вещества.

- описывать изученные свойства тел;
- распознавать тепловые явления и объяснять на базе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объема тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твердых агрегатные состояния вещества,
- анализировать свойства тел.

Взаимодействие тел.

- распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и неравномерное движение, относительность механического движения, инерция, взаимодействие тел;
- описывать изученные свойства тел и механические явления, используя физические величины: путь, скорость, масса тела, плотность вещества, сила (сила тяжести, сила упругости, сила трения), при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, механические явления и процессы, используя физические законы: принцип суперпозиции сил (нахождение равнодействующей силы, закон Гука), при этом различать словесную формулировку закона и его математическое выражение;
- решать задачи, используя физические законы (закон Гука) и формулы, связывающие физические величины (путь, скорость, масса тела, плотность вещества, сила, сила трения скольжения, коэффициент трения): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Давление твердых тел, жидкостей и газов.

• распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: передача давления твердыми телами, жидкостями и газами, атмосферное давление, плавание тел;

- описывать изученные свойства тел и механические явления, используя физические величины: давление, правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, механические явления и процессы, используя физические законы: закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;
- решать задачи, используя физические законы (закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (давление, сила, плотность): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины

Работа и мощность. Энергия.

- распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равновесие твердых тел, имеющих закрепленную ось вращения,
- описывать изученные свойства тел и механические явления, используя физические величины: кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД при совершении работы с использованием простого механизма, при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, механические явления и процессы, используя физические законы: закон сохранения энергии, при этом различать словесную формулировку закона;
- решать задачи, используя физический закон и формулы, связывающие физические величины (скорость, масса тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Обучающийся получит возможность научиться:

Физика и физические методы изучения природы.

- осознавать ценность научных исследований, роль физики в расширении представлений об окружающем мире и ее вклад в улучшение качества жизни;
- использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- сравнивать точность измерения физических величин по величине их относительной погрешности при проведении прямых измерений;
- самостоятельно проводить косвенные измерения и исследования физических величин с использованием различных способов измерения физических величин, выбирать средства измерения с учетом необходимой точности измерений, обосновывать выбор способа измерения, адекватного поставленной задаче, проводить оценку достоверности полученных результатов;

- воспринимать информацию физического содержания в научно-популярной литературе и средствах массовой информации, критически оценивать полученную информацию, анализируя ее содержание и данные об источнике информации;
- создавать собственные письменные и устные сообщения о физических явлениях на основе нескольких источников информации, сопровождать выступление презентацией, учитывая особенности аудитории сверстников.

Первоначальные сведения о строении вещества.

• приводить примеры практического использования физических знаний

Взаимолействие тел.

- использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры практического использования физических знаний о механических явлениях и физических законах;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов и ограниченность использования частных законов (закон Гука) находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний по механике с использованием математического аппарата, так и при помощи методов оценки.

Давление твердых тел, жидкостей и газов.

- использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры практического использования физических знаний о механических явлениях и физических законах; различать границы применимости физических законов, понимать ограниченность использования частных законов (закон Архимеда)
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний по механике с использованием математического аппарата, так и при помощи методов оценки.

Работа и мощность. Энергия.

- использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры практического использования физических знаний о механических явлениях и физических законах;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии);
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний по механике с использованием математического аппарата, так и при помощи методов оценки.

8 класс

Обучающийся научится:

Тепловые явления.

• распознавать тепловые явления и объяснять на базе имеющихся знаний основные свойства или условия протекания этих явлений: тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные

- способы теплопередачи (теплопроводность, конвекция, излучение), агрегатные состояния вещества, поглощение энергии при испарении жидкости и выделение ее при конденсации пара, зависимость температуры кипения от давления;
- описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внугренняя энергия, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, тепловые явления и процессы, используя основные положения атомно-молекулярного учения о строении вещества и закон сохранения энергии;
- различать основные признаки изученных физических моделей строения газов, жидкостей и твердых тел;
- приводить примеры практического использования физических знаний о тепловых явлениях;
- решать задачи, используя закон сохранения энергии в тепловых процессах и формулы, связывающие физические величины (количество теплоты, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Электрические явления.

- распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, электрический ток и его действия (тепловое, химическое, магнитное),
- составлять схемы электрических цепей с последовательным и параллельным соединением элементов, различая условные обозначения элементов электрических цепей (источник тока, ключ, резистор, реостат, лампочка, амперметр, вольтметр).
- описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами.
- анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля- Ленца; при этом различать словесную формулировку закона и его математическое выражение;
- приводить примеры практического использования физических знаний о электромагнитных явлениях;
- решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля- Ленца) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, формулы расчета электрического сопротивления при последовательном и параллельном соединении проводников): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения,

проводить расчеты и оценивать реальность полученного значения физической величины

Электромагнитные явления.

- распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: взаимодействие магнитов,
- приводить примеры практического использования физических знаний о электромагнитных явлениях

Световые явления.

- распознавать и объяснять на основе имеющихся знаний основные свойства или условия протекания явлений: прямолинейное распространение света, отражение и преломление света
- использовать оптические схемы для построения изображений в плоском зеркале и собирающей линзе.
- описывать изученные свойства тел, используя физические величины; фокусное расстояние и оптическая сила линзы; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами.
- анализировать свойства тел и процессы, используя физические законы: закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение.
- решать задачи, используя физические законы (закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (фокусное расстояние и оптическая сила линзы): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Обучающийся получит возможность научиться:

Тепловые явления.

- использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата, так и при помощи методов оценки

Электрические явления.

- использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля- Ленца и др.);

- использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата, так и при помощи методов оценки.

Электромагнитные явления.

- использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами,
- использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата, так и при помощи методов оценки.

Световые явления.

• различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон отражения, закон преломления) и ограниченность использования частных законов (закон прямолинейного распространения света и др.).

9 класс

Физика и ее роль в познании окружающего мира

Выпускник научится:

- соблюдать правила безопасности и охраны труда при работе с учебным и лабораторным оборудованием;
- понимать смысл основных физических терминов: физическое тело, физическое явление, физическая величина, единицы измерения;
- распознавать проблемы, которые можно решить при помощи физических методов; анализировать отдельные этапы проведения исследований и интерпретировать результаты наблюдений и опытов;
- ставить опыты по исследованию физических явлений или физических свойств тел без использования прямых измерений; при этом формулировать проблему/задачу учебного эксперимента; собирать установку из предложенного оборудования; проводить опыт и формулировать выводы.

Выпускник получит возможность научится:

- осознавать ценность научных исследований, роль физики в расширении представлений об окружающем мире и ее вклад в улучшение качества жизни;
- использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- сравнивать точность измерения физических величин по величине их относительной погрешности при проведении прямых измерений;

- самостоятельно проводить косвенные измерения и исследования физических величин с использованием различных способов измерения физических величин, выбирать средства измерения с учетом необходимой точности измерений, обосновывать выбор способа измерения, адекватного поставленной задаче, проводить оценку достоверности полученных результатов;
- воспринимать информацию физического содержания в научно-популярной литературе и средствах массовой информации, критически оценивать полученную информацию, анализируя ее содержание и данные об источнике информации; создавать собственные письменные и устные сообщения о физических явлениях на основе нескольких источников информации, сопровождать выступление презентацией, учитывая особенности аудитории сверстников.

Механические явления

Выпускник научится:

- распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и неравномерное движение, относительность механического движения, инерция, взаимодействие тел;
- описывать изученные свойства тел и механические явления, используя физические величины: путь, скорость, масса тела, плотность вещества, сила (сила тяжести, сила упругости, сила трения), при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, механические явления и процессы, используя физические законы: принцип суперпозиции сил (нахождение равнодействующей силы, закон Гука), при этом различать словесную формулировку закона и его математическое выражение;
- решать задачи, используя физические законы (закон Гука) и формулы, связывающие физические величины (путь, скорость, масса тела, плотность вещества, сила, сила трения скольжения, коэффициент трения): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины;
- распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: передача давления твердыми телами, жидкостями и газами, атмосферное давление, плавание тел;
- описывать изученные свойства тел и механические явления, используя физические величины: давление, правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины:
- анализировать свойства тел, механические явления и процессы, используя физические законы: закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;
- решать задачи, используя физические законы (закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (давление, сила, плотность): на основе анализа условия задачи записывать краткое условие, выделять физические величины,

- законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины;
- распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равновесие твердых тел, имеющих закрепленную ось вращения;
- описывать изученные свойства тел и механические явления, используя физические величины: кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД при совершении работы с использованием простого механизма, при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, механические явления и процессы, используя физические законы: закон сохранения энергии, при этом различать словесную формулировку закона;
- решать задачи, используя физический закон и формулы, связывающие физические величины (скорость, масса тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Выпускник получит возможность научиться:

- использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры практического использования физических знаний о механических явлениях и физических законах;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов и ограниченность использования частных законов (закон Гука, закон Архимеда, закон сохранения механической энергии) находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний по механике с использованием математического аппарата, так и при помощи методов оценки.

Тепловые явления

Выпускник научится:

- распознавать тепловые явления и объяснять на базе имеющихся знаний основные свойства или условия протекания этих явлений: тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи (теплопроводность, конвекция, излучение), агрегатные состояния вещества, поглощение энергии при испарении жидкости и выделение ее при конденсации пара, зависимость температуры кипения от давления;
- описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, при описании правильно трактовать физический

- смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, тепловые явления и процессы, используя основные положения атомно-молекулярного учения о строении вещества и закон сохранения энергии;
- различать основные признаки изученных физических моделей строения газов, жидкостей и твердых тел;
- приводить примеры практического использования физических знаний о тепловых явлениях;
- решать задачи, используя закон сохранения энергии в тепловых процессах и формулы, связывающие физические величины (количество теплоты, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Выпускник получит возможность научиться:

- использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата, так и при помощи методов оценки.

Электромагнитные явления

Выпускник научится:

- распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, электрический ток и его действия (тепловое, химическое, магнитное), взаимодействие магнитов;
- составлять схемы электрических цепей с последовательным и параллельным соединением элементов, различая условные обозначения элементов электрических цепей (источник тока, ключ, резистор, реостат, лампочка, амперметр, вольтметр);
- описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами.
- анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка

- цепи, закон Джоуля-Ленца; при этом различать словесную формулировку закона и его математическое выражение;
- приводить примеры практического использования физических знаний о электромагнитных явлениях;
- решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля-Ленца) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, формулы расчета электрического сопротивления при последовательном и параллельном соединении проводников): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины;
- распознавать и объяснять на основе имеющихся знаний основные свойства или условия протекания явлений: прямолинейное распространение света, отражение и преломление света;
- использовать оптические схемы для построения изображений в плоском зеркале и собирающей линзе;
- описывать изученные свойства тел, используя физические величины; фокусное расстояние и оптическая сила линзы; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами;
- анализировать свойства тел и процессы, используя физические законы: закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение;
- решать задачи, используя физические законы (закон прямолинейного распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (фокусное расстояние и оптическая сила линзы): на основе

Выпускник получит возможность научиться:

- использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля-Ленца и др.);
- использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата, так и при помощи методов оценки;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон отражения, закон преломления) и ограниченность использования частных законов (закон прямолинейного распространения света и др.).

Квантовые явления

Выпускник научится:

- распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, α-, β-, γ-излучения, возникновение линейчатого спектра излучения атома;
- описывать изученные квантовые явления, используя физические величины: массовое число, зарядовое число, период полураспада, энергия фотонов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать квантовые явления, используя физические законы и постулаты: закон сохранения массового числа, закономерности излучения и поглощения света атомом, при этом различать словесную формулировку закона и его математическое выражение; различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;
- приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, спектрального анализа.

Выпускник получит возможность научиться:

- использовать полученные знания в повседневной жизни при обращении с приборами и техническими устройствами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- соотносить энергию связи атомных ядер с дефектом массы;
- приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра и различать условия его использования;
- понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

Строение и эволюция Вселенной

Выпускник научится:

- указывать названия планет Солнечной системы; различать основные признаки суточного вращения звездного неба, движения Луны, Солнца и планет относительно звезд;
- понимать различия между гелиоцентрической и геоцентрической системами мира;

Выпускник получит возможность научиться:

- указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звездного неба при наблюдениях звездного неба;
- различать основные характеристики звезд (размер, цвет, температура) соотносить цвет звезды с ее температурой;
- различать гипотезы о происхождении Солнечной системы.

Содержание учебного предмета

7 класс

Физика и ее роль в познании окружающего мира (4ч)

Что изучает физика. Физические явления. Наблюдения, опыты, измерения. Физика и техника.

Лабораторная работа №

1. Определение цены деления измерительного прибора.

Первоначальные сведения о строении вещества (6ч)

Молекулы. Диффузия. Движение молекул. Связь температуры тела со скоростью движения его молекул. Притяжение и отталкивание молекул. Различные состояния вещества и их объяснение на основе молекулярно-кинетических представлений. Лабораторная работа №

2. Измерение размеров малых тел.

Взаимодействие тел (23ч)

Механическое движение. Равномерное движение. Скорость. Инерция. Взаимодействие тел. Масса тела. Измерение массы тела с помощью весов. Плотность вещества. Явление тяготения. Сила тяжести. Сила, возникающая при деформации. Вес. Связь между силой тяжести и массой. Упругая деформация. Закон Гука. Динамометр. Графическое изображение силы. Сложение сил, действующих по одной прямой. Трение. Сила трения. Трение скольжения, качения, покоя. Подшипники.

Контрольная работы по темам:

- 1. «Механическое движение», «Масса», «Плотность».
- 2. «Вес тела», «Графическое изображение сил», «Силы», «Равнодействующая сил». Лабораторная работа №
 - 3. Измерение массы тела на рычажных весах.
 - 4. Измерение объёма тела.
 - 5. Измерение плотности твёрдого тела.
 - 6. Градуирование пружины и измерение сил динамометром.
 - 7. Выяснение зависимости силы трения скольжения от площади соприкасающихся тел и прижимающей силы.

Давление твёрдых тел, жидкостей и газов (21ч)

Давление. Давление твёрдых тел. Давление газа. Объяснение давления газа на основе молекулярно-кинетических представлений. Закон Паскаля. Давление в жидкости и газе. Сообщающиеся сосуды. Шлюзы. (Водопровод.Гидравлический пресс.) Гидравлический тормоз. Атмосферное давление. Опыт Торричелли. Барометр-анероид. Изменение атмосферного давления с высотой. Манометры. Насосы. Архимедова сила. Условия плавания тел. Водный транспорт. Воздухоплавание.

Контрольная работа по теме «Давление твердых тел, жидкостей и газов». Лабораторная работа $\mathfrak{N}_{\underline{\circ}}$.

- 8. Определение выталкивающей силы, действующей на погруженное в жидкость тело.
- 9. Выяснение условий плавания тела в жидкости.

Работа и мощность. Энергия. (13ч)

Работа силы, действующей по направлению движения тела. Мощность. Простые механизмы. Условия равновесия рычага. Момент силы. Равновесие тел с закреплённой осью вращения. Виды равновесия.

Равенство работ при использовании механизмов. КПД механизма.

Потенциальная энергия поднятого тела, сжатой пружины. Кинетическая энергия движущегося тела. Превращение одного вида механической энергии в другой. Энергия рек и ветра.

Контрольная работа по теме «Работа и мощность. Энергия».

Лабораторная работа №

- 10. Выяснение условия равновесия рычага.
- 11. Измерение КПД при подъёме тела по наклонной плоскости.

Резервное время – 3 ч

8 класс

Тепловые явления (23 ч.):

Тепловое движение. Термометр. Связь температуры тела со скоростью движения его молекул. Внутренняя энергия. Два способа изменения внутренней энергии: работа и теплопередача. Виды теплопередачи. Количество теплоты. Удельная теплоемкость вещества. Удельная теплота сгорания топлива. Закон сохранения энергии в механических и тепловых процессах.

Плавление и отвердевание тел. Температура плавления. Удельная теплота плавления. Испарение и конденсация. Относительная влажность воздуха и ее измерение. Психрометр. Кипение. Температура кипения. Зависимость температуры кипения от давления. Удельная теплота парообразования.

Объяснение изменений агрегатных состояний вещества на основе молекулярнокинетических представлений.

Преобразование энергии в тепловых машинах. Двигатель внутреннего сгорания. Паровая турбина. Холодильник. Экологические проблемы использования тепловых машин.

Контрольные работы по теме «Тепловые явления»;

Контрольные работы по теме «Агрегатные состояния вещества».

Лабораторные работы №

- 1. Определение количества теплоты при смешивании воды разной температуры.
- 2. Определение удельной теплоемкости твердого тела.
- 3. Определение относительной влажности воздуха.

Электрические явления (29 ч):

Электризация тел. Два рода электрических зарядов. Проводники, диэлектрики и полупроводники. Взаимодействие заряженных тел. Электрическое поле. Закон сохранения электрического заряда. Дискретность электрического заряда. Электрон. Строение атомов.

Электрический ток. Гальванические элементы. Аккумуляторы. Электрическая цепь. Электрический ток в металлах. Сила тока. Амперметр. Электрическое напряжение. Вольтметр. Электрическое сопротивление. Закон Ома для участка электрической цепи. Удельное сопротивление. Реостаты. Последовательное и параллельное соединение проводников. Конденсатор. Электроемкость конденсатора.

Работа и мощность тока. Количество теплоты, выделяемое проводником с током. Счетчик электрической энергии. Лампа накаливания. Электронагревательные приборы. Расчет электроэнергии, потребляемой бытовыми электроприборами. Короткое замыкание. Плавкие предохранители.

Контрольная работа по темам «Электризация тел. Строение атома». «Электрический ток. Напряжение», «Сопротивление. Соединение проводников»;

Контрольная работа по темам «Работа и мощность электрическоготока», «Закон Джоуля—Ленца», «Конденсатор».

Лабораторные работы №

- 4. Сборка электрической цепи и измерение силытока в ее различных участках.
- 5. Измерение напряжения на различных участках электрической цепи.
- 6. Измерение силы тока и его регулирование реостатом.
- 7. Измерение сопротивления проводника при помощи амперметра и вольтметра.
- 8. Измерение мощности и работы тока в электрической лампе.

Электромагнитные явления (5ч):

Магнитное поле тока. Электромагниты и их применение. Постоянные магниты. Магнитное поле Земли. Действие магнитного поля на проводник с током. Электродвигатель.

Контрольная работапо теме «Электромагнитные явления».

Лабораторные работы №

- 9. Сборка электромагнита и испытание его действия.
- 10. Изучение электрического двигателя постоянного тока (на модели).

Световые явления (10 ч):

Источники света. Прямолинейное распространение света. Отражение света. Закон отражения. Плоское зеркало. Преломление света.

Линза. Фокусное расстояние линзы. Построение изображений, даваемых тонкой линзой. Оптическая сила линзы. Глаз как оптическая система. Оптические приборы.

Кратковременная контрольная работапо теме «Законы отражения и преломлениясвета». Лабораторная работа №

11. Изучение свойств изображения в линзах.

Резервное время (3 ч)

9 класс

Законы взаимодействия и движения тел (34 ч)

Материальная точка. Система отсчета. Перемещение. Скорость прямолинейного равномерного движения. Прямолинейное равноускоренное движение: мгновенная скорость, ускорение, перемещение. Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении. Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира. Инерциальная система отсчета. Первый, второй и третий законы Ньютона. Свободное падение. Невесомость. Закон всемирного тяготения. Искусственные спутники Земли. Импульс. Закон сохранения импульса. Реактивное движение.

Контрольная работа по теме «Законы взаимодействия и движения тел».

Лабораторные работы №

- 1. «Исследование равноускоренного движения без начальной скорости»
- 2. «Измерение ускорения свободного падения»

Механические колебания и волны. Звук (15 ч)

Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Маятник. Амплитуда, период, частота колебаний. Гармонические колебания. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Резонанс. Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения и периодом (частотой). Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо. Звуковой резонанс. Интерференция звука.

Контрольная работа по теме «Механические колебания и волны. Звук».

Лабораторные работы №

3. «Исследование зависимости периода и частоты свободных колебаний маятника от длины его нити»

Электромагнитное поле (25 ч)

Однородное и неоднородное магнитное поле. Направление тока и направление линий его магнитного поля. Правило буравчика. Обнаружение магнитного поля. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции. Генератор переменного Преобразования Переменный ток. тока. электрогенераторах. Трансформатор. Передача электрической энергии на расстояние. Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы. Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения. Интерференция света. Электромагнитная природа света. Преломление света. Показатель преломления. Дисперсия света. Цвета тел. Спектрограф и спектроскоп. Типы оптических спектров. Спектральный анализ. Поглощение и испускание света атомами. Происхождение линейчатых спектров.

Контрольная работапо теме «Электромагнитное поле».

Лабораторные работы №

- 4. «Изучение явления электромагнитной индукции»
- 5. «Наблюдение сплошного и линейчатых спектров испускания»

Строение атома и атомного ядра (20 ч)

Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета- и гамма-излучения. Опыты Резерфорда. Ядерная модель атома. Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Методы наблюдения и регистрации частиц в ядерной физике. Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел. Изотопы. Правило смещения для альфа- и бета-распада. Энергия связи частиц в ядре. Деление ядер урана. Цепная реакция. Ядерная энергетика. Экологические проблемы работы атомных электростанций. Период полураспада. Закон радиоактивного распада. Влияние радиоактивных излучений на живые организмы. Термоядерная реакция.

Контрольная работа по теме «Строение атома и атомного ядра. Использованиеэнергии атомных ядер».

Лабораторные работы №

- 6. Измерение естественного радиационного фона дозиметром.
- 7. Изучение деления ядра атома урана по фотографии треков.
- 8. Изучение треков заряженных частиц по готовым фотографиям» (выполняется дома).

Строение и эволюция Вселенной (5 ч)

Состав, строение и происхождение Солнечной системы. Планеты и малые тела Солнечной системы. Строение, излучение и эволюция Солнца и звезд. Строение и эволюция Вселенной.

Итоговое повторение (3 ч)

Тематическое планирование

7 класс

№ п/п	Тема	Всего	Из них	
			Контрольная работа	Лабораторная работа
1	Физика и ее роль в познании окружающего мира	4		1
2	Первоначальные сведения о строении вещества	6		1
3	Взаимодействие тел	23	2	5
4	Давление твёрдых тел, жидкостей и газов	21	1	2
5	Работа и мощность. Энергия.	13	1	2
6	Резервное время	3		

8 класс

№ п/п	Тема	Всего часов	Из них	
			Контрольная работа	Лабораторная работа
1	Тепловые явления	23	2	3
2	Электрические явления	29	2	5
3	Электромагнитные явления	5	1	2
4	Световые явления	10	1	1
5	Резервное время	3		

9 класс

№ п/п	Тема	Всего	Из них	
			Контрольная работа	Лабораторная работа
1	Законы взаимодействия и движения тел	34	1	2
2	Механические колебания и волны. Звук	15	1	1
3	Электромагнитное поле	25	1	2
4	Строение атома и атомного ядра	20	1	3
5	Строение и эволюция Вселенной	5		
6	Итоговое повторение	3		